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Abstract

We examine scalar differential equations with a general piecewise

constant argument, in short DEPCAG, that is, the argument is a gen-
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1 Introduction

Let Z, N and R be the sets of all integer, natural and real numbers, respec-
tively.

We investigate the global asymptotic behavior as well as oscillation of the
solution of differential equations with a general piecewise constant argument
(DEPCAG):

y′(t) = a(t)y(t) + b(t)y(γ(t)), y(τ) = y0, (1.1)

where a(t), b(t) are real-valued continuous functions of t defined on [τ,∞). The
deviation argument ℓ(t) = t − γ(t) is negative for ti < t < γi and positive for
γi < t < ti+1, i ∈ Z. Therefore, equations (1.1) is of considerable interests: on
each interval [ti, ti+1) it is of alternately advanced and retarded type. Eq.(1.1)
are of advanced type on I+

i = [ti, γi] and retarded type on I−
i = (γi, ti+1).

Differential equations with piecewise constant argument (DEPCA) with
argument deviation of fixed sign were the first to be investigated, see [2],[9],[11],
[24],[28],[33],[36]. These equations are related to impulse and loaded equations
and share the properties of certain models of vertically transmitted diseases,
see [8]. The study of DEPCA of alternately of retarded and advanced type
was initiated by A. R. Aftabizadeh and J. Wiener [1] in 1986, K. L. Cooke
and J. Wiener [10] in 1987. They observed that the change of sign in the
argument deviation led not only to interesting periodic properties but also
to complications in the asymptotic and oscillatory behavior of solutions. It
was then natural to try to study the oscillatory and the stability properties of
DEPCA with a general deviation argument.

Criteria for the existence of oscillatory solutions of DEPCA have been
derived by many authors [1]-[4],[6],[7],[10],[16]-[23],[25],[29]-[36]. It is therefore
of interest to know what additional conditions are needed to yield stability
of oscillatory solutions. While such questions have been dealt with in the
area of differential equations. As an example, in [1], A. R. Aftabizadeh et al.
established the following result: Let a, b ∈ R and b 6= 0 such that

a > 0 and
−a(ea + 1)

(ea/2 − 1)
2 < b <

−a

ea/2 − 1
ea/2,

a < 0 and b <
−a

ea/2 − 1
ea/2 or b >

−a(ea + 1)

(ea/2 − 1)
2 .

Then every oscillatory solution x of the following differential equation with
piecewise constant argument

x′(t) = ax(t) + b[t + 1
2
], x(0) = x0, (1.2)

tends to zero as t → ∞.
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To the best of our knowledge, there are some studies which are related
to DEPCAG [5],[12]–[15],[26],[27], but does not have any results up to now to
establish some simple criteria for the existence of oscillatory and nonoscillatory
solutions of DEPCAG. The aim of this paper is to extend these classic results
[1], [10] and [34] to DEPCAG (1.1).

For the reader’s convenience we give some known definitions that are re-
quired later.

We understand a solution y(t) of Eq.(1.1) as a continuous function on [τ,∞)
such that the derivative y′(t) exists at each point t ∈ [τ,∞), with the possible
exception of the points ti, i ∈ Z where one-sided derivative exists and Eq.(1.1)
is satisfied by y(t) on each interval (ti, ti+1) as well.

A function y(t) defined on [τ,∞) is said to be oscillatory if there exist two
real valued sequences (νn)n≥0, (ν ′

n)n≥0 ⊂ [τ,∞) such that νn → ∞, ν ′
n → ∞

as n → ∞ and y(νn) ≤ 0 ≤ y(ν ′
n) for n ≥ N , where N is sufficiently large.

Otherwise, the solution is called nonoscillatory.
A solution {xn}n≥i(τ) of the difference equation is called oscillatory if the

sequence {xn}n≥i(τ) is neither eventually positive nor eventually negative. Oth-
erwise, the solution is called nonoscillatory.

Our paper is organized in the following way: In the next section, criteria
of existence of the oscillatory and nonoscillatory solutions of scalar differential
equations with a general piecewise constant argument are established. In Sec-
tion 3, the stability of the solutions of linear differential equations is treated.
Furthermore, appropriate examples are provided in the last section.

2 Existence of the Oscillatory and Nonoscilla-

tory solutions

In this section we establish sufficient conditions for the oscillatory and nonoscil-
latory solutions of scalar differential equations of alternately advanced and
retarded type.

The following assumption will be needed throughout the paper:

(N) For every t ∈ R, let i = i(t) ∈ Z be the unique integer such that
t ∈ Ii = [ti, ti+1), λ(τ, γi(τ)) 6= 0, λ (ti, γi) 6= 0 for all i ∈ {i(τ) + j}j∈N

,
where

λ (t, s) := e
R t

s
a(κ)dκ +

∫ t

s

e
R t

u
a(κ)dκb(u)du. (2.1)

In the following theorem the conditions of existence and uniqueness of
solutions on [τ,∞) are established. The proof of the assertion is similar to
that of Theorem 2.1 in [12].
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Theorem 2.1 Suppose that (N) holds. Then, Eq.(1.1) has a unique solution
on [τ,∞) with the initial condition y(τ) = y0. Moreover for t ∈ [tn, tn+1),
n > i(τ), y has the form

y(t) =
λ (t, γn)

λ (tn, γn)
xn (2.2)

where xn = y(tn) and the sequence {xn}n≥i(τ) is the unique solution of the
difference equation

xn+1 =
λ (tn+1, γn)

λ (tn, γn)
xn, (2.3)

for n > i(τ) with the initial condition xi(τ) = y0.

Proof. Let yn(t) be a solution of equation (1.1) on the interval tn ≤ t < tn+1.
On this interval, we have

y′
n(t) = a(t)y(t) + b(t)yn(γn).

The general solution of this equation on the given interval is

yn(t) =

[

e
R t

γn
a(κ)dκ +

∫ t

γn

e
R t

s
a(κ)dκb(s)ds

]

yn(γn)

= λ (t, γn) yn(γn).

(2.4)

For t = tn and for t → tn+1 in (2.4), we have

yn(γn) =
yn(tn)

λ (tn, γn)
and yn(tn+1) = λ (tn+1, γn) yn(γn) for all n > i(τ).

(2.5)
Hence, replacing (2.5) in the previous relationship gives us:

yn(t) =

(

λ (t, γn)

λ (tn, γn)

)

yn(tn). (2.6)

From (2.6), we obtain the difference equation (2.3). Considering the initial
condition xi(τ) = y(τ) = y0, the solution of (2.3) can be obtained uniquely. So,
the unique solution of (1.1) with the initial condition y(τ) = y0 is obtained as
(2.2).

Note that in general, by recurrence relation, it is not difficult to see that
the unique solution of Eq.(1.1) on t ∈ [τ,∞) is given by

y(t) = y(τ)

(

λ
(

t, γi(t)

)

λ
(

ti(t), γi(t)

)

)





i(t)−1
∏

j=i(τ)+1

λ (tj+1, γj)

λ (tj, γj)





(

λ
(

ti(τ)+1, γi(τ)

)

λ
(

τ, γi(τ)

)

)

.

(2.7)

The next results are particular cases of Theorem 2.1.
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Corollary 2.1 Let λ̂(t) = eat + b
a
(eat − 1), ϑ+

i = γ(ti) − ti, ϑ−
i = ti+1 − γ(ti)

for all i ∈ {i(τ) + j}j∈N
and assume that λ̂

(

τ − γ(ti(τ))
)

6= 0 and λ̂
(

−ϑ+
i

)

6= 0
for all i ∈ {i(τ) + j}j∈N

. For a(t) = a 6= 0, b(t) = b constants, Eq.(1.1) has a
unique solution y which is given by

y(t) =
λ̂ (t − γn)

λ̂(−ϑ+
n )

xn, tn ≤ t < tn+1 (2.8)

where xn = y(tn) and the sequence {xn}n≥i(τ) satisfies the difference equations

xn+1 =
λ̂(ϑ−

n )

λ̂(−ϑ+
n )

xn, (2.9)

for n > i(τ) with the initial condition xi(τ) = y0.

Corollary 2.2 Let β (t) :=
∫ t

γ(t)
b(s)ds, β−

i :=
∫ ti+1

γ(ti)
b(s)ds, β (τ) 6= −1 and

β (ti) 6= −1 for all i ∈ {i(τ) + j}j∈N
. Then u′(t) = b(t)u(γ(t)) with the initial

condition u(τ) = y0 has a unique solution u which is given by

u(t) =
1 + β (t)

1 + β (tn)
un, tn ≤ t < tn+1 (2.10)

where un = u(tn) and the sequence {un}n≥i(τ) satisfies the difference equations

un+1 =
1 + β−

n

1 + β (tn)
un, (2.11)

for n > i(τ) with the initial condition ui(τ) = y0.

The following theorem give some sufficient conditions for the existence of
oscillatory and nonoscillatory solutions of Eq.(1.1).

Theorem 2.2 Suppose that (N) holds and let y : [τ,∞) → R be a solution of
Eq.(1.1). Then

a) If the solution {xn}n≥i(τ) of the difference equation (2.3) is oscillatory,
then the solution y(t) of Eq.(1.1) is also oscillatory.

b) If the sequence {xn}n≥i(τ) is nonoscillatory, then y(t) is nonoscillatory if
and only if

∫ γi

t

b(s)e
R γi

s
a(κ)dκds < 1 (2.12)

holds true for ti ≤ t < ti+1, i ≥ N , where N is sufficiently large.
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Proof. a) From (2.6), y(t) can be written on the interval tn ≤ t < tn+1,
n ∈ {i(τ) + j}j∈N

as

y(t) =

(

λ (t, γn)

λ (tn, γn)

)

xn.

This implies y(t) = y(tn) = xn for t = tn. From the theory of the difference
equations it is well known that xn is oscillatory if and only if xn · xn+1 ≤ 0
for n ≥ N ′, where N ′ is a sufficiently large integer. Thus y(t) is an oscillatory
solution.

b) Now, let xi be a nonoscillatory solution of the difference equation (2.3).
According to this, we can assume that xi > 0 for i ≥ N , where N is large
enough. If y(t) is a nonoscillatory solution, then we can take y(t) > 0 for
t ≥ T where T is sufficiently large. Hence, from (2.2), we have

y(t) =
λ (t, γi)

λ (ti, γi)
xi, (2.13)

for i ≥ n where n = max{N, T}. Since y(t) > 0, we have

λ (t, γi)

λ (ti, γi)
> 0,

which implies (2.12). Now, let us assume that (2.12) is true. We should
show that y(t) is nonoscillatory. For a contradiction assume that y(t) is an
oscillatory solution. Therefore, there must exist two sequences (νn), (ν ′

n) such
that νn → ∞, ν ′

n → ∞ as n → ∞ and y(νn) ≤ 0 ≤ y(ν ′
n). Let tn < νn < tn+1.

It is clear that νn → ∞ as n → ∞. So, from (2.2) we get

y(νn) =
λ
(

νn, γi(νn)

)

λ
(

ti(νn), γi(νn)

)xi(νn).

Since y(νn) ≤ 0 and xi(νn) = y(ti(νn)) > 0, we have
λ(νn,γi(νn))

λ(ti(νn),γi(νn))
< 0, which is

a contradiction to (2.12). The proof is the same, if xi < 0, for i ≥ N . Hence
the proof is completed.

By employing the similar technique as presented above, one can obtain the
following results for the oscillation of Eq.(1.1).

Theorem 2.3 Let b(t) be locally integrable on [τ,∞). Every solution of Eq.(1.1)

is oscillatory if the sequence {λ(tn+1,γn)
λ(tn,γn)

}n≥i(τ) is not eventually positive.
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Proof. From (2.3), {xn}n≥i(τ) can be written as

xn+1 =

(

λ (tn+1, γn)

λ (tn, γn)

)

xn.

It is easy to see that the sequence {xn}n≥i(τ) oscillates if {λ(tn+1,γn)
λ(tn,γn)

}n≥i(τ) is not

eventually positive. Therefore, by Theorem 2.2 a), y(t) oscillates if {xn}n≥i(τ)

oscillates. This completes the proof.

Theorem 2.4 If either of the conditions

lim
n→∞

sup

∫ γn

tn

b(s)e
R γn

s
a(κ)dκds > 1, (2.14)

lim
n→∞

inf

∫ tn+1

γn

b(s)e
R γn

s
a(κ)dκds < −1 (2.15)

holds true, then every solution of Eq.(1.1) is oscillatory.

Proof. Suppose that y is a solution of Eq.(1.1) such that y(t) > 0 (or y(t) < 0)
for t > tj , where j ∈ N is sufficiently large. If t ∈ Ii, i > j, then by (2.4) we
have

y(ti) =

(

e
R ti

γi
a(κ)dκ

+

∫ ti

γi

e
R ti
s

a(κ)dκb(s)ds

)

y(γi) = λ(ti, γi)y(γi).

Since y(γi) and y(ti) > 0, thus

0 < λ(ti, γi) if and only if

∫ γi

ti

e
R γi

s
a(κ)dκb(s)ds < 1,

or

lim
i→∞

sup

∫ γi

ti

e
R γi
s

a(κ)dκb(s)ds ≤ 1,

which contradicts condition (2.14).
Similarly, with t = ti+1 in (2.4), we get, after some simplifications and using
the fact that y(γi) > 0 and that y(ti+1) > 0,

∫ ti+1

γi

e
R γi

s
a(κ)dκb(s)ds > −1,

or

lim
i→∞

inf

∫ ti+1

γi

e
R γi
s

a(κ)dκb(s)ds ≥ −1,

which contradicts (2.15). Thus, Eq.(1.1) has oscillatory solutions only.
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Note that condition (2.14) or (2.15) is the classic hypothesis to verify the
existence of oscillatory solutions for DEPCA. See [1], [10], [33] and [34].

In a similar way to Theorem 2.4 we obtain

Theorem 2.5 If the conditions

lim
n→∞

sup

∫ γn

tn

b(s)e
R γn

s
a(κ)dκds < 1, (2.16)

lim
n→∞

inf

∫ tn+1

γn

b(s)e
R γn

s
a(κ)dκds > −1 (2.17)

hold true, then the sequence {xn}n≥i(τ) of the difference equation (2.3) is nonoscil-
latory.

Now, we establish some oscillation and nonoscillation results on DEPCAG
with constant coefficients which will be deduced from the previous results. Let
us consider the equation (1.1) with constant coefficients:

y′(t) = ay(t) + by(γ(t)), y(τ) = y0, (2.18)

where a, b are real constants.

Similar to Theorem 2.4 , we give the following result for Eq.(2.18).

Corollary 2.3 If a 6= 0 each one of the conditions

b > lim
i→∞

sup
a

ea(γi−ti) − 1
, b < − lim

i→∞
inf

aea(ti+1−γi)

ea(ti+1−γi) − 1
(2.19)

implies that every solution of Eq.(2.18) is oscillatory.

Corollary 2.3 extends Theorem 2.3 of Aftabizadeh and Wiener [1] with γ(t) =
[t + 1

2
].

The following Corollary shows that (2.19) is “best posible” (sharp) condi-
tion.

Corollary 2.4 If

− lim
i→∞

inf
aea(ti+1−γi)

ea(ti+1−γi) − 1
< b < lim

i→∞
sup

a

ea(γi−ti) − 1
, (2.20)

then Eq.(2.18) has no oscillatory solution.

Proof. Condition (2.20) implies λ̂(ϑ−n )

λ̂(−ϑ+
n )

> 0 for all n ≥ i(τ). So from (2.7) we

deduce that the solution y(t) of (2.18) is always of one sign on [τ,∞).
Corollary 2.4 extends Theorem 2.4 of Aftabizadeh and Wiener [1] with

γ(t) = [t + 1
2
] and Theorem 3.2 of [34] with γ(t) = m[ t+k

m
], 0 < k < m.
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3 Global asymptotic stability

Theorem 3.1 Let b(t) be locally integrable on [τ,∞). The zero solution of
Eq.(1.1) is global asymptotic stability as t → ∞ if and only if

∣

∣

∣

∣

λ(tj+1, γj)

λ(tj, γj)

∣

∣

∣

∣

≤ ℓ < 1 (3.1)

for all j > i(τ).

Proof. Since t ∈ [ti(t), ti(t)+1) and
λ(t,γi(t))

λ(ti(t),γi(t))
is continuous, the function

λ(t,γi(t))

λ(ti(t),γi(t))

is bounded for all t. The proof then follows easily from (2.2).

The next theorem gives necessary and sufficient conditions for the global
asymptotic stability of zero solution of Eq.(2.18). To prove the last theorem
we need the following assertion.
For tj+1 − tj 6= 2(γj − tj), let

ϕ(a) := ea·(tj+1−tj) − 2ea·(γj−tj) + 1, (3.2)

if ā is the nonzero solution of Eq.(3.2), we can check that ϕ(a)
a

> 0 for a > ā

and ϕ(a)
a

< 0 for a < ā.

Theorem 3.2 Let ā be the nonzero solution of Eq.(3.2) if tj+1−tj 6= 2(γj−tj),
and ā = 0 if tj+1 − tj = 2(γj − tj). The zero solution of Eq.(2.18) is global
asymptotic stability as t → ∞ if and only if any one of the following hypothesis
is satisfied: for all j > i(τ),

i) a < ā, a
(

2eaγj

eatj+1+eatj
− 1
)−1

< b or b < −a;

ii) a > ā, a
(

2eaγj

eatj+1+eatj
− 1
)−1

< b < −a;

iii) a = ā, b < −a.

Proof. If a+b > 0, then λ̂(t−γj) is increasing in Ij and assuming λ̂(tj−γj) > 0

leads to λ̂(tj+1−γj) > λ̂(tj−γj), that is,
λ̂(tj+1−γj)

λ̂(tj−γj)
> 1. The conditions a+b > 0

and λ̂(tj − γj) > 0 can be written as

−a < b <
a

ea(γj−tj) − 1
.

In this case, the solution y = 0 is unstable. The case

a + b < 0, λ̂(tj − γj) < 0
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is impossible. Indeed, the inequalities

b < −a, b >
a

ea(γj−tj) − 1

are inconsistent because −a < a

ea(γj−tj )−1
. From

a + b > 0 and λ̂(tj − γj) < 0

it follows that
b >

a

ea(γj−tj) − 1
> 0. (3.3)

The inequality
λ̂(tj+1−γj)

λ̂(tj−γj)
< 1 implies

ea(tj+1−γj) +
b

a

(

ea(tj+1−γj) − 1
)

> ea(tj−γj) +
b

a

(

ea(tj−γj) − 1
)

which is equivalent to a + b > 0. On the other hand,
λ̂(tj+1−γj)

λ̂(tj−γj)
> −1 gives

ea(tj+1−γj) +
b

a

(

ea(tj+1−γj) − 1
)

< −ea(tj−γj) − b

a

(

ea(tj−γj) − 1
)

whence

1 <
b

a

(

2eaγj

eatj+1 + eatj
− 1

)

= −ϕ(a)

a

(

b

ea(tj+1−tj) + 1

)

.

If a > ā, we have ϕ(a)
a

> 0, then

0 > − a

ϕ(a)

(

ea(tj+1−tj) + 1
)

> b.

This contradicts (3.3). For a < ā, we have ϕ(a)
a

< 0, then

− a

ϕ(a)

(

ea(tj+1−tj) + 1
)

= a

(

2eaγj

eatj+1 + eatj
− 1

)−1

< b

and since
a

ea(γj−tj) − 1
< a

(

2eaγj

eatj+1 + eatj
− 1

)−1

,

hypothesis (i) ensures asymptotic stability of y = 0. Finally, the conditions
a + b < 0 and λ̂(tj − γj) > 0 simply reduce to b < −a. The same result

follows from the inequality λ̂(tj+1 − γj) < λ̂(tj − γj). Furthermore, from

λ̂(tj+1 − γj) > −λ̂(tj − γj) we obtain

1 > −ϕ(a)

a

(

b

ea(tj+1−tj) + 1

)

.
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For a > ā, this confirms hypothesis (ii). The case a < ā again leads to b < −a.
In the same way, if a = ā we obtain condition (iii).

In view of the Theorem 3.2 and Corollary 2.3 we conclude that:

Corollary 3.1 Let ā be the nonzero solution of Eq.(3.2) if tj+1−tj 6= 2(γj−tj),
and ā = 0 if tj+1− tj = 2(γj − tj). Then every oscillatory solution of Eq.(2.18)
tends to zero if and only if any one of the following hypothesis is satisfied:

i) a < ā, a
(

2eaγj

eatj+1+eatj
− 1
)−1

< b;

ii) a > ā, a
(

2eaγj

eatj+1+eatj
− 1
)−1

< b < − lim
i→∞

inf aea(ti+1−γi)

ea(ti+1−γi)−1
.

4 Illustrative examples

We will introduce appropriate examples in this section. These examples will
show the usefulness of our theory.

Consider the following scalar equations with a general piecewise constant
argument:
Example 5.1. Let us consider the DEPCAG

y′(t) = (ln3)y(t) − 2y(γ(t)), y(0) = y0 (4.1)

where ti = 3j, γj = 3j + 2 for all j ∈ N ∪ {0}. Eq.(4.1) is a special case of

Eq.(2.18) with a = ln3, b = −2. It is easy to see that λ̂ (ti − γi) = e−2 −
2

ln3
(e−2 − 1) 6= 0 and ā ≈ 0.48121 is the nonzero solution of the equation (3.2)

with a = ln3, tj+1 − γj = 1 and γj − tj = 2.
We calculate

− aea(tj+1−γj)

ea(tj+1−γj) − 1
= −3

2
ln3 ≈ −1.6479,

and

a

(

2eaγj

eatj+1 + eatj
− 1

)−1

= 3

(

2eln 3·(3j+2)

eln 3·3(j+1) + eln 3·3j
− 1

)−1

≈ −2.0102

for j ≥ i(0). In this case, the second hypotheses (2.19) of Corollary 2.3 holds.
So, every solution of (4.1) is oscillatory. On the other hand, the hypotheses ii)
of Theorem 3.2 is satisfied, we conclude that any solution of Eq.(4.1) goes to
zero as t → ∞ by oscillating.
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Example 5.2. Let us consider the DEPCAG

y′(t) = − 4

e2 + 1
y(t) +

√
3

8
y

(

4

[

t + 2

4

])

, y(−2) = y0 (4.2)

where ti = 4j−2, γj = 4j for all j ∈ N∪{0}. It is easy to see that λ̂ (ti − γi) =
(

1 −
√

3(e2+1)
32

)

e
8

e2+1 +
√

3(e2+1)
32

6= 0 and as tj+1 − tj = 2(γj − tj) = 4, we have

ā = 0.
In this case,

− aea(tj+1−γj)

ea(tj+1−γj) − 1
=

4

e2 + 1

e
− 8

e2+1

e
− 8

e2+1 − 1
≈ −0.29892,

and
a

ea(γj−tj) − 1
= − 4

e2 + 1

1

e
− 8

e2+1 − 1
≈ 0.77574

for j ≥ i(−2).
We can see that the hypotheses (2.20) of Corollary 2.4 holds. So, every

solution of (4.2) is nonoscillatory. On the other hand, the hypotheses i) of

Theorem 3.2 is satisfied, because, b =
√

3
8

< 4
e2−1

= −a. Then we conclude
that zero solution of Eq.(4.2) is globally asymptotically stable.

Example 5.3. The solution of the DEPCAG

y′(t) = (2π + cos t)y

(

2π

[

t + π

2π

])

, y(−π) = c0, (4.3)

is oscillatory, but zero solution is not global asymptotic stability.
Proof. According to (4.3), we have γ(t) = 2π

[

t+π
2π

]

, then tj = 2πj − π,
γi = 2πj, for all j ∈ N ∪ {0}. Replacing b(t) = 2 + cos t in (2.10), we have

1 + β−
j

1 + β (tj)
=

1 +
∫ tj+1

γj
b(s)ds

1 +
∫ tj

γj
b(s)ds

=
1 +

∫ 2πj+π

2πj
(2π + cos s) ds

1 +
∫ 2πj−π

2πj
(2π + cos s) ds

=
1 + 2π2

1 − 2π2
< −1.

Then, { 1+β−
j

1+β(tj)
}j≥i(−π) is not eventually positive. All assumptions of Theorem

2.3 are satisfied, then every solution of Eq.(4.3) is oscillatory. But the condition
(3.1) is not fulfilled, so, due to Theorem 3.1, the zero solution of Eq.(4.3) is
not global asymptotic stability.
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